请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

笔趣阁 www.biquge34.net,重生之北国科技无错无删减全文免费阅读!

是不是也要准备个几年时间?

    这怎么选择,不是一目了然嘛!

    但大侠就是大侠,中村拿到这个论文后,不是继续往下研究,而是放飞自我。

    他决定试试在缓冲层中采用GaN而非AlN的方法。

    具体思路是在低温生长的非结晶状态的GaN膜之上,在高温条件下生长出GaN单晶膜。只要这个取得成功,就可以制出与在底板上直接生长单晶GaN膜相同的构造。

    按照这个思路,中村进行了尝试。

    结果嘛,一次成功!

    这种方法的核心,是采用了低温 GaN 缓冲层(500 ℃左右)替代了AlN缓冲层。这一基于低温GaN缓冲层的“两步法”工艺,成为日后工业界生长GaN基LED的标准工艺。

    当然了,做出这步改良的理由,也是异常奇怪。中村给出的解释居然是,别人用过的方法,我不用!

    这种“二”的说话方式,成永兴也用过!

    不就是强词夺理嘛!

    谁不会啊!

    你有种!

    别人对的方法,你也别用!

    —————————

    第四关,退火工艺。

    LED从本质上说是一个二极管,二极管的核心结构是半导体 p-n 结。p-n 结是由 n 型半导体(内部含有大量自由电子)和 p 型半导体(内部含有大量带正电的自由载流子——空穴)组成的界面。

    对 GaN 而言,n型掺杂比较容易实现,但 p 型掺杂却十分困难。在 GaN 中经常使用的 p 型掺杂剂是 Zn 或者 Mg,但是掺入这些杂质后,GaN 往往仍体现高阻特性,这意味着 p 型掺杂剂并没有被激活,没有起作用。

    这个问题曾困惑了科学界很久,最后也是被天野浩解决的。解决方法是用低能电子束辐照方法来获得p-GaN。

    这个方法的发现,天野浩也是耗时很久。他从86年起就一直在尝试,直到89年,才突然碰运气得到。

    —————————

    在这个步骤上,中村大侠的“二”病再此发作!

    他再次推翻了前面科学家的研究成果,改为加热!

    这也就是所谓退火工艺的由来。

    根据中村自己的解释,他是在非常偶然情况下,得到了这个意外结果。

    在重复电子束照射实验前,他不小心把工作台给加热了!于是,他就发现,在电子束辐照过程中,在样品下面加热可以获得更好的结果。

    对此现象,他又继续研究,进而确认,仅仅依靠加热就可以获得p-GaN。而退火工艺的原理,中村大侠并没有给出合理的解释。

    从此,热退火就成为了制作蓝光LED的标准工艺,沿用至今。

    当然了,事情是否真偶然,谁也不知道。

    讲故事谁不会?

    ...

    退火工艺的背后原理,在很久以后才被人揭示。

    p-GaN 中的 Mg 会被MOCVD 外延过程中引入的 H 钝化,形成 Mg-H络合物。无论是低能电子辐照还是热退火,都是通过借助外部能量破坏 Mg-H 键而激活 Mg 杂质。

    —————————

    这两个工艺步骤的实现,足以说明中村的逆天运气!

    前人耗时五六年的成果,他在很短的时间内,全部推翻,而且找到了更好的方式!

    而他发现的这些工艺步骤,即使在三十年后,也无人能改!

    有没有这么一种可能:

    这些工艺,之所以无人能改,因为它们实际就是三十年后的成熟工艺!但被提前拿到了1990年!

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”